VI掂迎豢畦F的取值大于1。VIF值越接近于1,多重共线性越轻,反之越重。当多重共线性严重时,应采取适当的方法进行调整。
coef0=np.array([5,6,7,8,9,10,11,12])
X1=np.random.rand(100,8)
y=np.dot(X1,coef0)+np.random.normal(0,1.5,size=100)
training=np.random.choice([True,False],p=[0.8,0.2],size=100)
lr1=LinearRegression()
lr1.fit(X1[training],y[training])
#系数的均方误差MSE
print(((lr1.coef_-coef0)**2).sum()/8)
#测试集准确率(R2)
print(lr1.score(X1[~training],y[~training]))
深度解析:
容忍度的值界于0至1之间,当容忍度值较小时,表示此自变量与其他自变量之间存在共线性。容忍度这个变量回归系数的估计值不够稳定,则回归系数的计算值也会有很大误差。方差膨胀系数是容忍度的倒数,VIF越大,表示自变量的容忍度越小,越有共线性问题。
通常以10作为判断边界。当VIF<10,不存在多重共线性;当10<=VIF<100,存在较强的多重共线性;当VIF>=100,存在严重多重共线性。