质数(primen掼鸿乡羰umber)又称素数,指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本笠漕骂稠身两个正因数的数)。
大于1的自然数若不是素数,则称之为合数(也称为合成数)。例如,5是个素数,因为其正约数只有1与5。
则是个合数,因为除了1与6外,2与3也是其正约数。算术基本定理确立了素数于数论里的核心地位:任何大于1的整数均可被表示成一串唯一素数之乘积。
为了确保该定理的唯一性,1被定义为不是素数,因为在因式分解中可以有任意多个1(如1×1×1×3等都是3的有效约数分解)。
50以内的质数分别是:1111223341、447。
扩展资料:
长期以来,数论,尤其是对素数的研究,一般都会被认为是典型的纯数学,除了求知的趣味之外,没有其他应用。特别是,一些数论学家,如英国数学家戈弗雷·哈罗德·哈代即对其工作绝对不会有任何在军事上的重大性感到自豪]。
然而,此一观点在1970年代时遭到粉碎,当素数被公开宣布可以作为产生公钥加密算法的基础之时。素数现在也被用在杂凑表与伪乱数产生器里。
旋转机被设计成在每个转片上有不同数目的销,在每个转片上的销的数量都会是素数,亦或是会与其他转片上的销的数量互素。这有助于在重复所有的组合之前,让所有转片的可能组合都能出现过一次。
国际标准书号的最后一码为校验码,其算法使用到了11是个素数的这个事实[来源请求]。
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数最好设计成素数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的素数次数的使用也得到了证明。实验表明,素数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
几个公开金钥加密算法,如RSA与迪菲-赫尔曼金钥交换,都是以大素数为其基础(如512位元的素数常被用于RSA里,而1024位元的素数则一般被迪菲-赫尔曼金钥交换所采用)。
RSA依靠计算出两个(大)素数的相乘会比找出相乘后的数的两个素因数容易出许多这个假设。迪菲-赫尔曼金钥交换依靠存在模幂次的有效算法,但相反运算的离散对数仍被认为是个困难的问题此一事实。
素数也影响了许多的艺术家与作家。法国作曲家奥立佛·梅湘使用素数创造出无节拍音乐。在《LaNativiteduSeigneur》与《Quatreetudesderythme》等作品里,梅湘同时采用由不同素数给定之长度的基调,创造出不可预测的节奏。
第三个练习曲《Neumesrythmiques》中出现了素数4447及53。据梅湘所述,此类作曲方式是“由自然的运动,自由且不均匀的持续运动中获得的灵感”
参考资料来源: