导数士候眨塄大于等于0可以确定是递增。导数大于零一定单调递增。导数大于零一定在定义域上单调递增。但是函数单调递增矣喾动痞并不可以推出导数大于零,因为导数要求原函数是在定义域上为连续的函数,导数大于零是函数单调递增的充分不必要条件。
导数的含义
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点可导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续,不连续的函数一定不可导。对于可导的函数f,x到f也是一个函数,称作f的导函数简称导数。